第50章

类别:其他 作者:Baldwin Thomas字数:5488更新时间:18/12/26 16:28:37
attribute,butfromtheirmakingtheoneaprinciple-andaprinciple inthesenseofanelement-andgeneratingnumberfromtheone。)The oldpoetsagreewiththisinasmuchastheysaythatnotthosewho arefirstintime,e。g。NightandHeavenorChaosorOcean,reign andrule,butZeus。Thesepoets,however,areledtospeakthusonly becausetheythinkoftherulersoftheworldaschanging;forthose ofthemwhocombinethetwocharactersinthattheydonotuse mythicallanguagethroughout,e。g。Pherecydesandsomeothers,make theoriginalgeneratingagenttheBest,andsodotheMagi,andsome ofthelatersagesalso,e。g。bothEmpedoclesandAnaxagoras,of whomonemadeloveanelement,andtheothermadereasona principle。Ofthosewhomaintaintheexistenceoftheunchangeable substancessomesaytheOneitselfisthegooditself;butthey thoughtitssubstancelaymainlyinitsunity。 This,then,istheproblem,-whichofthetwowaysofspeakingis right。Itwouldbestrangeiftothatwhichisprimaryandeternaland mostself-sufficientthisveryquality——self-sufficiencyand self-maintenance——belongsprimarilyinsomeotherwaythanasa good。Butindeeditcanbefornootherreasonindestructibleor self-sufficientthanbecauseitsnatureisgood。Thereforetosaythat thefirstprincipleisgoodisprobablycorrect;butthatthis principleshouldbetheOneor,ifnotthat,atleastanelement, andanelementofnumbers,isimpossible。Powerfulobjectionsarise, toavoidwhichsomehavegivenupthetheory(viz。thosewhoagree thattheOneisafirstprincipleandelement,butonlyof mathematicalnumber)。Foronthisviewalltheunitsbecome identicalwithspeciesofgood,andthereisagreatprofusionof goods。Again,iftheFormsarenumbers,alltheFormsareidentical withspeciesofgood。ButletamanassumeIdeasofanythinghe pleases。IftheseareIdeasonlyofgoods,theIdeaswillnotbe substances;butiftheIdeasarealsoIdeasofsubstances,allanimals andplantsandallindividualsthatshareinIdeaswillbegood。 Theseabsurditiesfollow,anditalsofollowsthatthecontrary element,whetheritispluralityortheunequal,i。e。thegreatand small,isthebad-itself。(Henceonethinkeravoidedattachingthe goodtotheOne,becauseitwouldnecessarilyfollow,sincegeneration isfromcontraries,thatbadnessisthefundamentalnatureof plurality;whileotherssayinequalityisthenatureofthebad。)It follows,then,thatallthingspartakeofthebadexceptone——the Oneitself,andthatnumberspartakeofitinamoreundilutedform thanspatialmagnitudes,andthatthebadisthespaceinwhichthe goodisrealized,andthatitpartakesinanddesiresthatwhichtends todestroyit;forcontrarytendstodestroycontrary。Andif,aswe weresaying,thematteristhatwhichispotentiallyeachthing, e。g。thatofactualfireisthatwhichispotentiallyfire,thebad willbejustthepotentiallygood。 Alltheseobjections,then,follow,partlybecausetheymakeevery principleanelement,partlybecausetheymakecontraries principles,partlybecausetheymaketheOneaprinciple,partly becausetheytreatthenumbersasthefirstsubstances,andascapable ofexistingapart,andasForms。 If,then,itisequallyimpossiblenottoputthegoodamongthe firstprinciplesandtoputitamongtheminthisway,evidentlythe principlesarenotbeingcorrectlydescribed,norarethefirst substances。Nordoesanyoneconceivethemattercorrectlyifhe comparestheprinciplesoftheuniversetothatofanimalsandplants, onthegroundthatthemorecompletealwayscomesfromthe indefiniteandincomplete-whichiswhatleadsthisthinkertosaythat thisisalsotrueofthefirstprinciplesofreality,sothatthe Oneitselfisnotevenanexistingthing。Thisisincorrect,for eveninthisworldofanimalsandplantstheprinciplesfromwhich thesecomearecomplete;foritisamanthatproducesaman,and theseedisnotfirst。 Itisoutofplace,also,togenerateplacesimultaneouslywith themathematicalsolids(forplaceispeculiartotheindividual things,andhencetheyareseparateinplace;butmathematicalobjects arenowhere),andtosaythattheymustbesomewhere,butnotsaywhat kindofthingtheirplaceis。 Thosewhosaythatexistingthingscomefromelementsandthatthe firstofexistingthingsarethenumbers,shouldhavefirst distinguishedthesensesinwhichonethingcomesfromanother,and thensaidinwhichsensenumbercomesfromitsfirstprinciples。 Byintermixture?But(1)noteverythingiscapableof intermixture,and(2)thatwhichisproducedbyitisdifferentfrom itselements,andonthisviewtheonewillnotremainseparateora distinctentity;buttheywantittobeso。 Byjuxtaposition,likeasyllable?Butthen(1)theelements musthaveposition;and(2)hewhothinksofnumberwillbeableto thinkoftheunityandthepluralityapart;numberthenwillbethis-a unitandplurality,ortheoneandtheunequal。 Again,comingfromcertainthingsmeansinonesensethatthese arestilltobefoundintheproduct,andinanotherthattheyare not;whichsensedoesnumbercomefromtheseelements?Onlythings thataregeneratedcancomefromelementswhicharepresentinthem。 Doesnumbercome,then,fromitselementsasfromseed?Butnothing canbeexcretedfromthatwhichisindivisible。Doesitcomefrom itscontrary,itscontrarynotpersisting?Butallthingsthatcomein thiswaycomealsofromsomethingelsewhichdoespersist。Since, then,onethinkerplacesthe1ascontrarytoplurality,andanother placesitascontrarytotheunequal,treatingthe1asequal, numbermustbebeingtreatedascomingfromcontraries。Thereis, then,somethingelsethatpersists,fromwhichandfromonecontrary thecompoundisorhascometobe。Again,whyintheworlddothe otherthingsthatcomefromcontraries,orthathavecontraries, perish(evenwhenallofthecontraryisusedtoproducethem), whilenumberdoesnot?Nothingissaidaboutthis。Yetwhetherpresent ornotpresentinthecompoundthecontrarydestroysit,e。g。’strife’ destroysthe’mixture’(yetitshouldnot;foritisnottothat thatiscontrary)。 Oncemore,ithasnotbeendeterminedatallinwhichway numbersarethecausesofsubstancesandofbeing-whether(1)as boundaries(aspointsareofspatialmagnitudes)。Thisishow Eurytusdecidedwhatwasthenumberofwhat(e。g。oneofmanand anotherofhorse),viz。byimitatingthefiguresoflivingthingswith pebbles,assomepeoplebringnumbersintotheformsoftriangleand square。Or(2)isitbecauseharmonyisaratioofnumbers,andso ismanandeverythingelse?Buthowaretheattributes-whiteandsweet andhot-numbers?Evidentlyitisnotthenumbersthatarethe essenceorthecausesoftheform;fortheratioistheessence,while thenumberthecausesoftheform;fortheratioistheessence,while thenumberisthematter。E。g。theessenceoffleshorboneis numberonlyinthisway,’threepartsoffireandtwoofearth’。Anda number,whatevernumberitis,isalwaysanumberofcertainthings, eitherofpartsoffireorearthorofunits;buttheessenceis thatthereissomuchofonethingtosomuchofanotherinthe mixture;andthisisnolongeranumberbutaratioofmixtureof numbers,whetherthesearecorporealorofanyotherkind。 Number,then,whetheritbenumberingeneralorthenumber whichconsistsofabstractunits,isneitherthecauseasagent,nor thematter,northeratioandformofthings。Nor,ofcourse,isit thefinalcause。 Onemightalsoraisethequestionwhatthegoodisthatthingsget fromnumbersbecausetheircompositionisexpressiblebyanumber, eitherbyonewhichiseasilycalculableorbyanoddnumber。Forin facthoney-waterisnomorewholesomeifitismixedintheproportion ofthreetimesthree,butitwoulddomoregoodifitwereinno particularratiobutwelldilutedthanifitwerenumerically expressiblebutstrong。Again,theratiosofmixturesareexpressedby theaddingofnumbers,notbymerenumbers;e。g。itis’threepartsto two’,not’threetimestwo’。Forinanymultiplicationthegenusof thethingsmultipliedmustbethesame;thereforetheproduct1X2X3 mustbemeasurableby1,and4X5X6by4andthereforeallproducts intowhichthesamefactorentersmustbemeasurablebythatfactor。 Thenumberoffire,then,cannotbe2X5X3X6andatthesametime thatofwater2X3。 Ifallthingsmustshareinnumber,itmustfollowthatmany thingsarethesame,andthesamenumbermustbelongtoonething andtoanother。Isnumberthecause,then,anddoesthethingexist becauseofitsnumber,oristhisnotcertain?E。g。themotionsofthe sunhaveanumber,andagainthoseofthemoon,-yes,andthelife andprimeofeachanimal。Why,then,shouldnotsomeofthese numbersbesquares,somecubes,andsomeequal,othersdouble?There isnoreasonwhytheyshouldnot,andindeedtheymustmovewithin theselimits,sinceallthingswereassumedtoshareinnumber。Andit wasassumedthatthingsthatdifferedmightfallunderthesame number。Thereforeifthesamenumberhadbelongedtocertainthings, thesewouldhavebeenthesameasoneanother,sincetheywouldhave hadthesameformofnumber;e。g。sunandmoonwouldhavebeenthe same。Butwhyneedthesenumbersbecauses?Therearesevenvowels, thescaleconsistsofsevenstrings,thePleiadesareseven,at sevenanimalslosetheirteeth(atleastsomedo,thoughsomedonot), andthechampionswhofoughtagainstThebeswereseven。Isitthen becausethenumberisthekindofnumberitis,thatthechampions weresevenorthePleiadconsistsofsevenstars?Surelythechampions weresevenbecausethereweresevengatesorforsomeotherreason, andthePleiadwecountasseven,aswecounttheBearastwelve, whileotherpeoplescountmorestarsinboth。Naytheyevensaythat X,PsandZareconcordsandthatbecausetherearethreeconcords, thedoubleconsonantsalsoarethree。Theyquiteneglectthefactthat theremightbeathousandsuchletters;foronesymbolmightbe assignedtoGP。Butiftheysaythateachofthesethreeisequalto twooftheotherletters,andnootherisso,andifthecauseisthat therearethreepartsofthemouthandoneletterisineachapplied tosigma,itisforthisreasonthatthereareonlythree,notbecause theconcordsarethree;sinceasamatteroffacttheconcordsare morethanthree,butofdoubleconsonantstherecannotbemore。 Thesepeopleareliketheold-fashionedHomericscholars,who seesmallresemblancesbutneglectgreatones。Somesaythatthereare manysuchcases,e。g。thatthemiddlestringsarerepresentedby nineandeight,andthattheepicversehasseventeensyllables,which isequalinnumbertothetwostrings,andthatthescansionis,in therighthalfofthelineninesyllables,andinthelefteight。 Andtheysaythatthedistanceinthelettersfromalphatoomegais equaltothatfromthelowestnoteoftheflutetothehighest,and thatthenumberofthisnoteisequaltothatofthewholechoirof heaven。Itmaybesuspectedthatnoonecouldfinddifficultyeither instatingsuchanalogiesorinfindingthemineternalthings, sincetheycanbefoundeveninperishablethings。 Butthelaudedcharacteristicsofnumbers,andthecontrariesof these,andgenerallythemathematicalrelations,assomedescribe them,makingthemcausesofnature,seem,whenweinspecttheminthis way,tovanish;fornoneofthemisacauseinanyofthesenses thathavebeendistinguishedinreferencetothefirstprinciples。 Inasense,however,theymakeitplainthatgoodnessbelongsto numbers,andthattheodd,thestraight,thesquare,thepotencies ofcertainnumbers,areinthecolumnofthebeautiful。Forthe seasonsandaparticularkindofnumbergotogether;andtheother agreementsthattheycollectfromthetheoremsofmathematicsallhave thismeaning。Hencetheyarelikecoincidences。Fortheyare accidents,butthethingsthatagreeareallappropriatetoone another,andonebyanalogy。Forineachcategoryofbeingan analogoustermisfound-asthestraightisinlength,soisthe levelinsurface,perhapstheoddinnumber,andthewhiteincolour。 Again,itisnottheidealnumbersthatarethecausesof musicalphenomenaandthelike(forequalidealnumbersdifferfrom oneanotherinform;foreventheunitsdo);sothatweneednot assumeIdeasforthisreasonatleast。 These,then,aretheresultsofthetheory,andyetmoremight bebroughttogether。Thefactthatouropponntshavemuchtroublewith thegenerationofnumbersandcaninnowaymakeasystemofthem, seemstoindicatethattheobjectsofmathematicsarenotseparable fromsensiblethings,assomesay,andthattheyarenotthefirst principles- THEEND-