第49章

类别:其他 作者:Baldwin Thomas字数:5148更新时间:18/12/26 16:28:37
falsity。Thisisalsowhyitusedtobesaidthatwemustassume somethingthatisfalse,asgeometersassumethelinewhichisnota footlongtobeafootlong。Butthiscannotbeso。Forneitherdo geometersassumeanythingfalse(fortheenunciationisextraneous totheinference),norisitnon-beinginthissensethatthethings thatarearegeneratedfromorresolvedinto。Butsince’non-being’ takeninitsvariouscaseshasasmanysensesastherearecategories, andbesidesthisthefalseissaidnottobe,andsoisthepotential, itisfromthisthatgenerationproceeds,manfromthatwhichisnot manbutpotentiallyman,andwhitefromthatwhichisnotwhitebut potentiallywhite,andthiswhetheritissomeonethingthatis generatedormany。 Thequestionevidentlyis,howbeing,inthesenseof’the substances’,ismany;forthethingsthataregeneratedarenumbers andlinesandbodies。Nowitisstrangetoinquirehowbeinginthe senseofthe’what’ismany,andnothoweitherqualitiesor quantitiesaremany。Forsurelytheindefinitedyador’thegreat andthesmall’isnotareasonwhythereshouldbetwokindsof whiteormanycoloursorflavoursorshapes;forthenthesealsowould benumbersandunits。Butiftheyhadattackedtheseothercategories, theywouldhaveseenthecauseofthepluralityinsubstancesalso; forthesamethingorsomethinganalogousisthecause。This aberrationisthereasonalsowhyinseekingtheoppositeofbeingand theone,fromwhichwithbeingandtheonethethingsthatare proceed,theypositedtherelativeterm(i。e。theunequal),whichis neitherthecontrarynorthecontradictoryofthese,andisonekind ofbeingas’what’andqualityalsoare。 Theyshouldhaveaskedthisquestionalso,howrelativeterms aremanyandnotone。Butasitis,theyinquirehowtherearemany unitsbesidesthefirst1,butdonotgoontoinquirehowthereare manyunequalsbesidestheunequal。Yettheyusethemandspeakof greatandsmall,manyandfew(fromwhichproceednumbers),longand short(fromwhichproceedstheline),broadandnarrow(fromwhich proceedstheplane),deepandshallow(fromwhichproceedsolids);and theyspeakofyetmorekindsofrelativeterm。Whatisthereason, then,whythereisapluralityofthese? Itisnecessary,then,aswesay,topresupposeforeachthing thatwhichisitpotentially;andtheholderoftheseviewsfurther declaredwhatthatiswhichispotentiallya’this’andasubstance butisnotinitselfbeing-viz。thatitistherelative(asifhe hadsaid’thequalitative’),whichisneitherpotentiallytheoneor being,northenegationoftheonenorofbeing,butoneamongbeings。 Anditwasmuchmorenecessary,aswesaid,ifhewasinquiringhow beingsaremany,nottoinquireaboutthoseinthesamecategory-how therearemanysubstancesormanyqualities-buthowbeingsasa wholearemany;forsomearesubstances,somemodifications,some relations。Inthecategoriesotherthansubstancethereisyetanother probleminvolvedintheexistenceofplurality。Sincetheyarenot separablefromsubstances,qualitiesandquantitiesaremanyjust becausetheirsubstratumbecomesandismany;yetthereoughttobe amatterforeachcategory;onlyitcannotbeseparablefrom substances。Butinthecaseof’thises’,itispossibletoexplainhow the’this’ismanythings,unlessathingistobetreatedasbotha ’this’andageneralcharacter。Thedifficultyarisingfromthe factsaboutsubstancesisratherthis,howthereareactuallymany substancesandnotone。 Butfurther,ifthe’this’andthequantitativearenotthe same,wearenottoldhowandwhythethingsthatarearemany,but howquantitiesaremany。Forall’number’meansaquantity,andso doesthe’unit’,unlessitmeansameasureorthequantitatively indivisible。If,then,thequantitativeandthe’what’are different,wearenottoldwhenceorhowthe’what’ismany;butif anyonesaystheyarethesame,hehastofacemanyinconsistencies。 Onemightfixone’sattentionalsoonthequestion,regarding thenumbers,whatjustifiesthebeliefthattheyexist。Tothe believerinIdeastheyprovidesomesortofcauseforexistingthings, sinceeachnumberisanIdea,andtheIdeaistootherthings somehoworotherthecauseoftheirbeing;forletthissuppositionbe grantedthem。Butasforhimwhodoesnotholdthisviewbecausehe seestheinherentobjectionstotheIdeas(sothatitisnotfor thisreasonthathepositsnumbers),butwhopositsmathematical number,whymustwebelievehisstatementthatsuchnumberexists,and ofwhatuseissuchnumbertootherthings?Neitherdoeshewhosays itexistsmaintainthatitisthecauseofanything(herathersaysit isathingexistingbyitself),norisitobservedtobethecause ofanything;forthetheoremsofarithmeticianswillallbefoundtrue evenofsensiblethings,aswassaidbefore。 Asforthose,then,whosupposetheIdeastoexistandtobe numbers,bytheirassumptioninvirtueofthemethodofsettingout eachtermapartfromitsinstances-oftheunityofeachgeneralterm theytryatleasttoexplainsomehowwhynumbermustexist。Since theirreasons,however,areneitherconclusivenorinthemselves possible,onemustnot,forthesereasonsatleast,assertthe existenceofnumber。Again,thePythagoreans,becausetheysawmany attributesofnumbersbelongingtesensiblebodies,supposedreal thingstobenumbers-notseparablenumbers,however,butnumbersof whichrealthingsconsist。Butwhy?Becausetheattributesof numbersarepresentinamusicalscaleandintheheavensandin manyotherthings。Those,however,whosaythatmathematicalnumber aloneexistscannotaccordingtotheirhypothesessayanythingofthis sort,butitusedtobeurgedthatthesesensiblethingscouldnot bethesubjectofthesciences。Butwemaintainthattheyare,aswe saidbefore。Anditisevidentthattheobjectsofmathematicsdo notexistapart;foriftheyexistedaparttheirattributeswould nothavebeenpresentinbodies。NowthePythagoreansinthispoint areopentonoobjection;butinthattheyconstructnaturalbodies outofnumbers,thingsthathavelightnessandweightoutofthings thathavenotweightorlightness,theyseemtospeakofanother heavenandotherbodies,notofthesensible。Butthosewhomake numberseparableassumethatitbothexistsandisseparablebecause theaxiomswouldnotbetrueofsensiblethings,whilethe statementsofmathematicsaretrueand’greetthesoul’;andsimilarly withthespatialmagnitudesofmathematics。Itisevident,then, boththattherivaltheorywillsaythecontraryofthis,andthatthe difficultyweraisedjustnow,whyifnumbersareinnowaypresentin sensiblethingstheirattributesarepresentinsensiblethings,has tobesolvedbythosewhoholdtheseviews。 Therearesomewho,becausethepointisthelimitandextreme oftheline,thelineoftheplane,andtheplaneofthesolid, thinktheremustberealthingsofthissort。Wemusttherefore examinethisargumenttoo,andseewhetheritisnotremarkably weak。For(i)extremesarenotsubstances,butratherallthesethings arelimits。Forevenwalking,andmovementingeneral,hasalimit,so thatontheirtheorythiswillbea’this’andasubstance。Butthat isabsurd。Notbutwhat(ii)eveniftheyaresubstances,theywill allbethesubstancesofthesensiblethingsinthisworld;forit istothesethattheargumentapplied。Whythenshouldtheybecapable ofexistingapart? Again,ifwearenottooeasilysatisfied,wemay,regardingall numberandtheobjectsofmathematics,pressthisdifficulty,that theycontributenothingtooneanother,thepriortotheposterior; forifnumberdidnotexist,nonethelessspatialmagnitudeswould existforthosewhomaintaintheexistenceoftheobjectsof mathematicsonly,andifspatialmagnitudesdidnotexist,souland sensiblebodieswouldexist。Buttheobservedfactsshowthatnature isnotaseriesofepisodes,likeabadtragedy。Asforthe believersintheIdeas,thisdifficultymissesthem;forthey constructspatialmagnitudesoutofmatterandnumber,linesoutof thenumberplanesdoubtlessoutofsolidsoutofortheyuseother numbers,whichmakesnodifference。Butwillthesemagnitudesbe Ideas,orwhatistheirmannerofexistence,andwhatdothey contributetothings?Thesecontributenothing,astheobjectsof mathematicscontributenothing。Butnotevenisanytheoremtrueof them,unlesswewanttochangetheobjectsofmathematicsandinvent doctrinesofourown。Butitisnothardtoassumeanyrandom hypothesesandspinoutalongstringofconclusions。These thinkers,then,arewronginthisway,inwantingtounitetheobjects ofmathematicswiththeIdeas。Andthosewhofirstpositedtwokinds ofnumber,thatoftheFormsandthatwhichismathematical,neither havesaidnorcansayhowmathematicalnumberistoexistandof whatitistoconsist。Fortheyplaceitbetweenidealandsensible number。If(i)itconsistsofthegreatandsmall,itwillbethesame astheother-ideal-number(hemakesspatialmagnitudesoutofsome othersmallandgreat)。Andif(ii)henamessomeotherelement,he willbemakinghiselementsrathermany。Andiftheprincipleof eachofthetwokindsofnumberisa1,unitywillbesomethingcommon tothese,andwemustinquirehowtheoneisthesemanythings, whileatthesametimenumber,accordingtohim,cannotbegenerated exceptfromoneandanindefinitedyad。 Allthisisabsurd,andconflictsbothwithitselfandwiththe probabilities,andweseemtoseeinitSimonides’longrigmarole’for thelongrigmarolecomesintoplay,likethoseofslaves,whenmen havenothingsoundtosay。Andtheveryelements-thegreatandthe small-seemtocryoutagainsttheviolencethatisdonetothem;for theycannotinanywaygeneratenumbersotherthanthosegotfrom1by doubling。 Itisstrangealsotoattributegenerationtothingsthatare eternal,orratherthisisoneofthethingsthatareimpossible。 ThereneedbenodoubtwhetherthePythagoreansattributegeneration tothemornot;fortheysayplainlythatwhentheonehadbeen constructed,whetheroutofplanesorofsurfaceorofseedorof elementswhichtheycannotexpress,immediatelythenearestpartof theunlimitedbegantobeconstrainedandlimitedbythelimit。But sincetheyareconstructingaworldandwishtospeakthelanguage ofnaturalscience,itisfairtomakesomeexaminationoftheir physicaltheorics,buttoletthemofffromthepresentinquiry;for weareinvestigatingtheprinciplesatworkinunchangeablethings,so thatitisnumbersofthiskindwhosegenesiswemuststudy。 Thesethinkerssaythereisnogenerationoftheoddnumber,which evidentlyimpliesthatthereisgenerationoftheeven;andsome presenttheevenasproducedfirstfromunequals-thegreatandthe small-whentheseareequalized。Theinequality,then,mustbelongto thembeforetheyareequalized。Iftheyhadalwaysbeenequalized, theywouldnothavebeenunequalbefore;forthereisnothingbefore thatwhichisalways。Thereforeevidentlytheyarenotgivingtheir accountofthegenerationofnumbersmerelytoassistcontemplationof theirnature。 Adifficulty,andareproachtoanyonewhofindsitno difficulty,arecontainedinthequestionhowtheelementsandthe principlesarerelatedtothegoodandthebeautiful;thedifficulty isthis,whetheranyoftheelementsissuchathingaswemeanbythe gooditselfandthebest,orthisisnotso,butthesearelaterin originthantheelements。Thetheologiansseemtoagreewithsome thinkersofthepresentday,whoanswerthequestioninthe negative,andsaythatboththegoodandthebeautifulappearinthe natureofthingsonlywhenthatnaturehasmadesomeprogress。(This theydotoavoidarealobjectionwhichconfrontsthosewhosay,as somedo,thattheoneisafirstprinciple。Theobjectionarisesnot fromtheirascribinggoodnesstothefirstprincipleasan