第47章

类别:其他 作者:Baldwin Thomas字数:5207更新时间:18/12/26 16:28:37
starting-point?Ashasbeensaid,therightangleisthoughttobe priortotheacute,andtheacutetotheright,andeachisone。 Accordinglytheymake1thestarting-pointinbothways。Butthisis impossible。Fortheuniversalisoneasformorsubstance,whilethe elementisoneasapartorasmatter。Foreachofthetwoisina senseone-intrutheachofthetwounitsexistspotentially(at leastifthenumberisaunityandnotlikeaheap,i。e。if differentnumbersconsistofdifferentiatedunits,astheysay),but notincompletereality;andthecauseoftheerrortheyfellinto isthattheywereconductingtheirinquiryatthesametimefromthe standpointofmathematicsandfromthatofuniversaldefinitions,so that(1)fromtheformerstandpointtheytreatedunity,theirfirst principle,asapoint;fortheunitisapointwithoutposition。 Theyputthingstogetheroutofthesmallestparts,assomeothers alsohavedone。Thereforetheunitbecomesthematterofnumbersand atthesametimepriorto2;andagainposterior,2beingtreatedasa whole,aunity,andaform。But(2)becausetheywereseekingthe universaltheytreatedtheunitywhichcanbepredicatedofa number,asinthissensealsoapartofthenumber。Butthese characteristicscannotbelongatthesametimetothesamething。 Ifthe1-itselfmustbeunitary(foritdiffersinnothingfrom other1’sexceptthatitisthestarting-point),andthe2is divisiblebuttheunitisnot,theunitmustbelikerthe1-itself thanthe2is。Butiftheunitislikerit,itmustbelikertothe unitthantothe2;thereforeeachoftheunitsin2mustbeprior tothe2。Buttheydenythis;atleasttheygeneratethe2first。 Again,ifthe2-itselfisaunityandthe3-itselfisonealso,both forma2。Fromwhat,then,isthis2produced? Sincethereisnotcontactinnumbers,butsuccession,viz。 betweentheunitsbetweenwhichthereisnothing,e。g。betweenthose in2orin3onemightaskwhetherthesesucceedthe1-itselfor not,andwhether,ofthetermsthatsucceedit,2oreitherofthe unitsin2isprior。 Similardifficultiesoccurwithregardtotheclassesofthings posteriortonumber,-theline,theplane,andthesolid。Forsome constructtheseoutofthespeciesofthe’greatandsmall’;e。g。 linesfromthe’longandshort’,planesfromthe’broadandnarrow’, massesfromthe’deepandshallow’;whicharespeciesofthe’great andsmall’。Andtheoriginativeprincipleofsuchthingswhichanswers tothe1differentthinkersdescribeindifferentways,Andinthese alsotheimpossibilities,thefictions,andthecontradictionsof allprobabilityareseentobeinnumerable。For(i)geometrical classesareseveredfromoneanother,unlesstheprinciplesofthese areimpliedinoneanotherinsuchawaythatthe’broadandnarrow’ isalso’longandshort’(butifthisisso,theplanewillbeline andthesolidaplane;again,howwillanglesandfiguresandsuch thingsbeexplained?)。And(ii)thesamehappensasinregardto number;for’longandshort’,&c。,areattributesofmagnitude,but magnitudedoesnotconsistofthese,anymorethanthelineconsists of’straightandcurved’,orsolidsof’smoothandrough’。 (Alltheseviewsshareadifficultywhichoccurswithregardto species-of-a-genus,whenonepositstheuniversals,viz。whetheritis animal-itselforsomethingotherthananimal-itselfthatisinthe particularanimal。True,iftheuniversalisnotseparablefrom sensiblethings,thiswillpresentnodifficulty;butifthe1andthe numbersareseparable,asthosewhoexpresstheseviewssay,itisnot easytosolvethedifficulty,ifonemayapplythewords’noteasy’to theimpossible。Forwhenweapprehendtheunityin2,oringeneralin anumber,doweapprehendathing-itselforsomethingelse?)。 Some,then,generatespatialmagnitudesfrommatterofthis sort,othersfromthepoint-andthepointisthoughtbythemtobe not1butsomethinglike1-andfromothermatterlikeplurality,but notidenticalwithit;aboutwhichprinciplesnonethelessthesame difficultiesoccur。Forifthematterisone,lineandplane-and soliwillbethesame;forfromthesameelementswillcomeoneand thesamething。Butifthemattersaremorethanone,andthereisone forthelineandasecondfortheplaneandanotherforthesolid, theyeitherareimpliedinoneanotherornot,sothatthesame resultswillfollowevenso;foreithertheplanewillnotcontaina lineoritwillhealine。 Again,hownumbercanconsistoftheoneandplurality,they makenoattempttoexplain;buthowevertheyexpressthemselves,the sameobjectionsariseasconfrontthosewhoconstructnumberoutof theoneandtheindefinitedyad。Fortheoneviewgeneratesnumber fromtheuniversallypredicatedplurality,andnotfromaparticular plurality;andtheothergeneratesitfromaparticularplurality,but thefirst;for2issaidtobea’firstplurality’。Thereforethereis practicallynodifference,butthesamedifficultieswillfollow,-is itintermixtureorpositionorblendingorgeneration?andsoon。 Aboveallonemightpressthequestion’ifeachunitisone,whatdoes itcomefrom?’Certainlyeachisnottheone-itself。Itmust,then, comefromtheoneitselfandplurality,orapartofplurality。Tosay thattheunitisapluralityisimpossible,foritisindivisible;and togenerateitfromapartofpluralityinvolvesmanyother objections;for(a)eachofthepartsmustbeindivisible(orit willbeapluralityandtheunitwillbedivisible)andtheelements willnotbetheoneandplurality;forthesingleunitsdonotcome frompluralityandtheone。Again,(,theholderofthisviewdoes nothingbutpresupposeanothernumber;forhispluralityof indivisiblesisanumber。Again,wemustinquire,inviewofthis theoryalso,whetherthenumberisinfiniteorfinite。Fortherewas atfirst,asitseems,apluralitythatwasitselffinite,from whichandfromtheonecomesthefinitenumberofunits。Andthere isanotherpluralitythatisplurality-itselfandinfinite plurality;whichsortofplurality,then,istheelementwhich co-operateswiththeone?Onemightinquiresimilarlyaboutthepoint, i。e。theelementoutofwhichtheymakespatialmagnitudes。Forsurely thisisnottheoneandonlypoint;atanyrate,then,letthemsay outofwhateachofthepointsisformed。Certainlynotofsome distance+thepoint-itself。Noragaincantherebeindivisible partsofadistance,astheelementsoutofwhichtheunitsaresaid tobemadeareindivisiblepartsofplurality;fornumberconsists ofindivisibles,butspatialmagnitudesdonot。 Alltheseobjections,then,andothersofthesortmakeitevident thatnumberandspatialmagnitudescannotexistapartfromthings。 Again,thediscordaboutnumbersbetweenthevariousversionsisa signthatitistheincorrectnessoftheallegedfactsthemselvesthat bringsconfusionintothetheories。Forthosewhomaketheobjects ofmathematicsaloneexistapartfromsensiblethings,seeingthe difficultyabouttheFormsandtheirfictitiousness,abandonedideal numberandpositedmathematical。Butthosewhowishedtomakethe Formsatthesametimealsonumbers,butdidnotsee,ifoneassumed theseprinciples,howmathematicalnumberwastoexistapartfrom ideal,madeidealandmathematicalnumberthesame-inwords,since infactmathematicalnumberhasbeendestroyed;fortheystate hypothesespeculiartothemselvesandnotthoseofmathematics。Andhe whofirstsupposedthattheFormsexistandthattheFormsarenumbers andthattheobjectsofmathematicsexist,naturallyseparatedthe two。Thereforeitturnsoutthatallofthemarerightinsome respect,butonthewholenotright。Andtheythemselvesconfirmthis, fortheirstatementsdonotagreebutconflict。Thecauseisthat theirhypothesesandtheirprinciplesarefalse。Anditishardto makeagoodcaseoutofbadmaterials,accordingtoEpicharmus:’as soonas’tissaid,’tisseentobewrong。’ Butregardingnumbersthequestionswehaveraisedandthe conclusionswehavereachedaresufficient(forwhilehewhois alreadyconvincedmightbefurtherconvincedbyalongerdiscussion, onenotyetconvincedwouldnotcomeanynearertoconviction); regardingthefirstprinciplesandthefirstcausesandelements, theviewsexpressedbythosewhodiscussonlysensiblesubstance havebeenpartlystatedinourworksonnature,andpartlydonot belongtothepresentinquiry;buttheviewsofthosewhoassert thatthereareothersubstancesbesidesthesensiblemustbe considerednextafterthosewehavebeenmentioning。Since,then,some saythattheIdeasandthenumbersaresuchsubstances,andthatthe elementsoftheseareelementsandprinciplesofrealthings,we mustinquireregardingthesewhattheysayandinwhatsensethey sayit。 Thosewhopositnumbersonly,andthesemathematical,mustbe consideredlater;butasregardsthosewhobelieveintheIdeasone mightsurveyatthesametimetheirwayofthinkingandthedifficulty intowhichtheyfall。FortheyatthesametimemaketheIdeas universalandagaintreatthemasseparableandasindividuals。That thisisnotpossiblehasbeenarguedbefore。Thereasonwhythose whodescribedtheirsubstancesasuniversalcombinedthesetwo characteristicsinonething,isthattheydidnotmakesubstances identicalwithsensiblethings。Theythoughtthattheparticularsin thesensibleworldwereastateoffluxandnoneofthemremained,but thattheuniversalwasapartfromtheseandsomethingdifferent。And Socratesgavetheimpulsetothistheory,aswesaidinourearlier discussion,byreasonofhisdefinitions,buthedidnotseparate universalsfromindividuals;andinthishethoughtrightly,innot separatingthem。Thisisplainfromtheresults;forwithoutthe universalitisnotpossibletogetknowledge,buttheseparationis thecauseoftheobjectionsthatarisewithregardtotheIdeas。His successors,however,treatingitasnecessary,iftherearetobe anysubstancesbesidesthesensibleandtransientsubstances,that theymustbeseparable,hadnoothers,butgaveseparateexistence totheseuniversallypredicatedsubstances,sothatitfollowedthat universalsandindividualswerealmostthesamesortofthing。Thisin itself,then,wouldbeonedifficultyintheviewwehavementioned。 Letusnowmentionapointwhichpresentsacertaindifficulty bothtothosewhobelieveintheIdeasandtothosewhodonot,and whichwasstatedbefore,atthebeginning,amongtheproblems。Ifwe donotsupposesubstancestobeseparate,andinthewayinwhich individualthingsaresaidtobeseparate,weshalldestroy substanceinthesenseinwhichweunderstand’substance’;butifwe conceivesubstancestobeseparable,howarewetoconceivetheir elementsandtheirprinciples? Iftheyareindividualandnotuniversal,(a)realthingswill bejustofthesamenumberastheelements,and(b)theelements willnotbeknowable。For(a)letthesyllablesinspeechbe substances,andtheirelementselementsofsubstances;thentheremust beonlyone’ba’andoneofeachofthesyllables,sincetheyare notuniversalandthesameinformbuteachisoneinnumberanda ’this’andnotakindpossessedofacommonname(andagainthey supposethatthe’justwhatathingis’isineachcaseone)。Andif thesyllablesareunique,sotooarethepartsofwhichthey consist;therewillnot,then,bemorea’sthanone,normorethanone ofanyoftheotherelements,onthesameprincipleonwhichan identicalsyllablecannotexistinthepluralnumber。Butifthisis so,therewillnotbeotherthingsexistingbesidestheelements, butonlytheelements。 (b)Again,theelementswillnotbeevenknowable;fortheyare notuniversal,andknowledgeisofuniversals。Thisisclearfrom demonstrationsandfromdefinitions;forwedonotconcludethat thistrianglehasitsanglesequaltotworightangles,unlessevery trianglehasitsanglesequaltotworightangles,northatthisman isananimal,unlesseverymanisananimal。 Butiftheprinciplesareuniversal,eitherthesubstances