第46章

类别:其他 作者:Baldwin Thomas字数:5090更新时间:18/12/26 16:28:37
Butthisconsequencealsowemustnotforget,thatitfollowsthat therearepriorandposterior2andsimilarlywiththeother numbers。Forletthe2’sinthe4besimultaneous;yettheseareprior tothoseinthe8andasthe2generatedthem,theygeneratedthe 4’sinthe8-itself。Thereforeifthefirst2isanIdea,these2’s alsowillbeIdeasofsomekind。Andthesameaccountappliestothe units;fortheunitsinthefirst2generatethefourin4,sothat alltheunitscometobeIdeasandanIdeawillbecomposedof Ideas。Clearlythereforethosethingsalsoofwhichthesehappentobe theIdeaswillbecomposite,e。g。onemightsaythatanimalsare composedofanimals,ifthereareIdeasofthem。 Ingeneral,todifferentiatetheunitsinanywayisan absurdityandafiction;andbyafictionImeanaforcedstatement madetosuitahypothesis。Forneitherinquantitynorinqualitydo weseeunitdifferingfromunit,andnumbermustbeeitherequalor unequal-allnumberbutespeciallythatwhichconsistsofabstract units-sothatifonenumberisneithergreaternorlessthan another,itisequaltoit;butthingsthatareequalandinnowise differentiatedwetaketobethesamewhenwearespeakingofnumbers。 Ifnot,noteventhe2inthe10-itselfwillbeundifferentiated, thoughtheyareequal;forwhatreasonwillthemanwhoallegesthat theyarenotdifferentiatedbeabletogive? Again,ifeveryunit+anotherunitmakestwo,aunitfromthe 2-itselfandonefromthe3-itselfwillmakea2。Now(a)thiswill consistofdifferentiatedunits;andwillitbepriortothe3or posterior?Itratherseemsthatitmustbeprior;foroneoftheunits issimultaneouswiththe3andtheotherissimultaneouswiththe2。 Andwe,forourpart,supposethatingeneral1and1,whetherthe thingsareequalorunequal,is2,e。g。thegoodandthebad,oraman andahorse;butthosewhoholdtheseviewssaythatnoteventwo unitsare2。 Ifthenumberofthe3-itselfisnotgreaterthanthatofthe2, thisissurprising;andifitisgreater,clearlythereisalsoa numberinitequaltothe2,sothatthisisnotdifferentfromthe 2-itself。Butthisisnotpossible,ifthereisafirstandasecond number。 NorwilltheIdeasbenumbers。Forinthisparticularpointthey arerightwhoclaimthattheunitsmustbedifferent,ifthereare tobeIdeas;ashasbeensaidbefore。FortheFormisunique;butif theunitsarenotdifferent,the2’sandthe3’salsowillnotbe different。Thisisalsothereasonwhytheymustsaythatwhenwe countthus-’1,2’-wedonotproceedbyaddingtothegivennumber; forifwedo,neitherwillthenumbersbegeneratedfromthe indefinitedyad,norcananumberbeanIdea;forthenoneIdeawill beinanother,andallFormswillbepartsofoneForm。Andsowith aviewtotheirhypothesistheirstatementsareright,butasa wholetheyarewrong;fortheirviewisverydestructive,sincethey willadmitthatthisquestionitselfaffordssome difficulty-whether,whenwecountandsay-1,2,3-wecountby additionorbyseparateportions。Butwedoboth;andsoitis absurdtoreasonbackfromthisproblemtosogreatadifferenceof essence。 Firstofallitiswelltodeterminewhatisthedifferentiaof anumber-andofaunit,ifithasadifferentia。Unitsmustdiffer eitherinquantityorinquality;andneitheroftheseseemstobe possible。Butnumberquanumberdiffersinquantity。Andifthe unitsalsodiddifferinquantity,numberwoulddifferfromnumber, thoughequalinnumberofunits。Again,arethefirstunitsgreateror smaller,anddothelateronesincreaseordiminish?Alltheseare irrationalsuppositions。Butneithercantheydifferinquality。For noattributecanattachtothem;foreventonumbersqualityissaid tobelongafterquantity。Again,qualitycouldnotcometothemeither fromthe1orthedyad;fortheformerhasnoquality,andthe lattergivesquantity;forthisentityiswhatmakesthingstobe many。Ifthefactsarereallyotherwise,theyshouldstatethis quiteatthebeginninganddetermineifpossible,regardingthe differentiaoftheunit,whyitmustexist,and,failingthis,what differentiatheymean。 Evidentlythen,iftheIdeasarenumbers,theunitscannotall beassociable,norcantheybeinassociableineitherofthetwoways。 Butneitheristhewayinwhichsomeothersspeakaboutnumbers correct。ThesearethosewhodonotthinkthereareIdeas,either withoutqualificationorasidentifiedwithcertainnumbers,butthink theobjectsofmathematicsexistandthenumbersarethefirstof existingthings,andthe1-itselfisthestarting-pointofthem。Itis paradoxicalthatthereshouldbea1whichisfirstof1’s,asthey say,butnota2whichisfirstof2’s,nora3of3’s;forthesame reasoningappliestoall。If,then,thefactswithregardtonumber areso,andonesupposesmathematicalnumberalonetoexist,the1 isnotthestarting-point(forthissortof1mustdifferfrom the-otherunits;andifthisisso,theremustalsobea2whichis firstof2’s,andsimilarlywiththeothersuccessivenumbers)。Butif the1isthestarting-point,thetruthaboutthenumbersmustrather bewhatPlatousedtosay,andtheremustbeafirst2and3and numbersmustnotbeassociablewithoneanother。Butifontheother handonesupposesthis,manyimpossibleresults,aswehavesaid, follow。Buteitherthisortheothermustbethecase,sothatif neitheris,numbercannotexistseparately。 Itisevident,also,fromthisthatthethirdversionisthe worst,-theviewidealandmathematicalnumberisthesame。Fortwo mistakesmustthenmeetintheoneopinion。(1)Mathematicalnumber cannotbeofthissort,buttheholderofthisviewhastospinitout bymakingsuppositionspeculiartohimself。And(2)hemustalsoadmit alltheconsequencesthatconfrontthosewhospeakofnumberinthe senseof’Forms’。 ThePythagoreanversioninonewayaffordsfewerdifficultiesthan thosebeforenamed,butinanotherwayhasotherspeculiarto itself。Fornotthinkingofnumberascapableofexistingseparately removesmanyoftheimpossibleconsequences;butthatbodiesshouldbe composedofnumbers,andthatthisshouldbemathematicalnumber,is impossible。Foritisnottruetospeakofindivisiblespatial magnitudes;andhowevermuchtheremightbemagnitudesofthissort, unitsatleasthavenotmagnitude;andhowcanamagnitudebecomposed ofindivisibles?Butarithmeticalnumber,atleast,consistsofunits, whilethesethinkersidentifynumberwithrealthings;atanyrate theyapplytheirpropositionstobodiesasiftheyconsistedof thosenumbers。 If,then,itisnecessary,ifnumberisaself-subsistentreal thing,thatitshouldexistinoneofthesewayswhichhavebeen mentioned,andifitcannotexistinanyofthese,evidentlynumber hasnosuchnatureasthosewhomakeitseparablesetupforit。 Again,doeseachunitcomefromthegreatandthesmall, equalized,oronefromthesmall,anotherfromthegreat?(a)Ifthe latter,neitherdoeseachthingcontainalltheelements,norare theunitswithoutdifference;forinonethereisthegreatandin anotherthesmall,whichiscontraryinitsnaturetothegreat。 Again,howisitwiththeunitsinthe3-itself?Oneofthemisanodd unit。Butperhapsitisforthisreasonthattheygive1-itselfthe middleplaceinoddnumbers。(b)Butifeachofthetwounitsconsists ofboththegreatandthesmall,equalized,howwillthe2whichis asinglething,consistofthegreatandthesmall?Orhowwillit differfromtheunit?Again,theunitispriortothe2;forwhenit isdestroyedthe2isdestroyed。Itmust,then,betheIdeaofanIdea sinceitispriortoanIdea,anditmusthavecomeintobeing beforeit。Fromwhat,then?Notfromtheindefinitedyad,forits functionwastodouble。 Again,numbermustbeeitherinfiniteorfinite;forthese thinkersthinkofnumberascapableofexistingseparately,sothatit isnotpossiblethatneitherofthosealternativesshouldbetrue。 Clearlyitcannotbeinfinite;forinfinitenumberisneitherodd noreven,butthegenerationofnumbersisalwaysthegeneration eitherofanoddorofanevennumber;inoneway,when1operates onanevennumber,anoddnumberisproduced;inanotherway,when2 operates,thenumbersgotfrom1bydoublingareproduced;in anotherway,whentheoddnumbersoperate,theotherevennumbers areproduced。Again,ifeveryIdeaisanIdeaofsomething,andthe numbersareIdeas,infinitenumberitselfwillbeanIdeaof something,eitherofsomesensiblethingorofsomethingelse。Yet thisisnotpossibleinviewoftheirthesisanymorethanitis reasonableinitself,atleastiftheyarrangetheIdeasastheydo。 Butifnumberisfinite,howfardoesitgo?Withregardtothis notonlythefactbutthereasonshouldbestated。Butifnumber goesonlyupto10assomesay,firstlytheFormswillsoonrunshort; e。g。if3isman-himself,whatnumberwillbethehorse-itself?The seriesofthenumberswhicharetheseveralthings-themselvesgoes upto10。Itmust,then,beoneofthenumberswithintheselimits; foritisthesethataresubstancesandIdeas。Yettheywillrun short;forthevariousformsofanimalwilloutnumberthem。Atthe sametimeitisclearthatifinthiswaythe3isman-himself,the other3’saresoalso(forthoseinidenticalnumbersaresimilar),so thattherewillbeaninfinitenumberofmen;ifeach3isanIdea, eachofthenumberswillbeman-himself,andifnot,theywillat leastbemen。Andifthesmallernumberispartofthegreater (beingnumberofsuchasortthattheunitsinthesamenumberare associable),thenifthe4-itselfisanIdeaofsomething,e。g。of ’horse’orof’white’,manwillbeapartofhorse,ifmanisItis paradoxicalalsothatthereshouldbeanIdeaof10butnotof11,nor ofthesucceedingnumbers。Again,therebothareandcometobe certainthingsofwhichtherearenoForms;why,then,aretherenot Formsofthemalso?WeinferthattheFormsarenotcauses。Again, itisparadoxical-ifthenumberseriesupto10ismoreofareal thingandaFormthan10itself。Thereisnogenerationofthe formerasonething,andthereisofthelatter。Buttheytryto workontheassumptionthattheseriesofnumbersupto10isa completeseries。Atleasttheygeneratethederivatives-e。g。thevoid, proportion,theodd,andtheothersofthiskind-withinthedecade。 Forsomethings,e。g。movementandrest,goodandbad,theyassign totheoriginativeprinciples,andtheotherstothenumbers。This iswhytheyidentifytheoddwith1;foriftheoddimplied3how would5beodd?Again,spatialmagnitudesandallsuchthingsare explainedwithoutgoingbeyondadefinitenumber;e。g。thefirst, theindivisible,line,thenthe2&c。;theseentitiesalsoextendonly upto10。 Again,ifnumbercanexistseparately,onemightaskwhichis prior-1,or3or2?Inasmuchasthenumberiscomposite,1isprior, butinasmuchastheuniversalandtheformisprior,thenumberis prior;foreachoftheunitsispartofthenumberasitsmatter, andthenumberactsasform。Andinasensetherightangleisprior totheacute,becauseitisdeterminateandinvirtueofits definition;butinasensetheacuteisprior,becauseitisapart andtherightangleisdividedintoacuteangles。Asmatter,then,the acuteangleandtheelementandtheunitareprior,butinrespect oftheformandofthesubstanceasexpressedinthedefinition,the rightangle,andthewholeconsistingofthematterandtheform, areprior;fortheconcretethingisnearertotheformandtowhatis expressedinthedefinition,thoughingenerationitislater。How thenis1thestarting-point?Becauseitisnotdivisiable,they say;butboththeuniversal,andtheparticularortheelement,are indivisible。Buttheyarestarting-pointsindifferentways,onein definitionandtheotherintime。Inwhichway,then,is1the