第45章

类别:其他 作者:Baldwin Thomas字数:5143更新时间:18/12/26 16:28:37
But,further,allotherthingscannotcomefromtheFormsinany oftheusualsensesof’from’。Andtosaythattheyarepatternsand theotherthingsshareinthemistouseemptywordsandpoetical metaphors。Forwhatisitthatworks,lookingtotheIdeas?Andany thingcanbothbeandcomeintobeingwithoutbeingcopiedfrom somethingelse,sothat,whetherSocratesexistsornot,amanlike Socratesmightcometobe。Andevidentlythismightbesoevenif Socrateswereeternal。Andtherewillbeseveralpatternsofthe samething,andthereforeseveralForms;e。g。’animal’and ’two-footed’,andalso’man-himself’,willbeFormsofman。Again,the Formsarepatternsnotonlyofsensiblethings,butofForms themselvesalso;i。e。thegenusisthepatternofthevarious forms-of-a-genus;thereforethesamethingwillbepatternandcopy。 Again,itwouldseemimpossiblethatsubstanceandthatwhose substanceitisshouldexistapart;how,therefore,couldtheIdeas, beingthesubstancesofthings,existapart? InthePhaedothecaseisstatedinthisway-thattheFormsare causesbothofbeingandofbecoming。YetthoughtheFormsexist, stillthingsdonotcomeintobeing,unlessthereissomethingto originatemovement;andmanyotherthingscomeintobeing(e。g。a houseoraring)ofwhichtheysaytherearenoForms。Clearly thereforeeventhethingsofwhichtheysaythereareIdeascanboth beandcomeintobeingowingtosuchcausesasproducethethingsjust mentioned,andnotowingtotheForms。ButregardingtheIdeasitis possible,bothinthiswayandbymoreabstractandaccurate arguments,tocollectmanyobjectionslikethosewehaveconsidered。 Sincewehavediscussedthesepoints,itiswelltoconsideragain theresultsregardingnumberswhichconfrontthosewhosaythat numbersareseparablesubstancesandfirstcausesofthings。Ifnumber isanentityanditssubstanceisnothingotherthanjustnumber,as somesay,itfollowsthateither(1)thereisafirstinitanda second,eachbeingdifferentinspecies,-andeither(a)thisistrue oftheunitswithoutexception,andanyunitisinassociablewith anyunit,or(b)theyareallwithoutexceptionsuccessive,andanyof themareassociablewithany,astheysayisthecasewith mathematicalnumber;forinmathematicalnumbernooneunitisin anywaydifferentfromanother。Or(c)someunitsmustbeassociable andsomenot;e。g。supposethat2isfirstafter1,andthencomes3 andthentherestofthenumberseries,andtheunitsineachnumber areassociable,e。g。thoseinthefirst2areassociablewithone another,andthoseinthefirst3withoneanother,andsowiththe othernumbers;buttheunitsinthe’2-itself’areinassociablewith thoseinthe’3-itself’;andsimilarlyinthecaseoftheother successivenumbers。Andsowhilemathematicalnumberiscounted thus-after1,2(whichconsistsofanother1besidestheformer1), and3whichconsistsofanother1besidesthesetwo),andtheother numberssimilarly,idealnumberiscountedthus-after1,adistinct 2whichdoesnotincludethefirst1,anda3whichdoesnotinclude the2andtherestofthenumberseriessimilarly。Or(2)onekind ofnumbermustbelikethefirstthatwasnamed,onelikethatwhich themathematiciansspeakof,andthatwhichwehavenamedlastmustbe athirdkind。 Again,thesekindsofnumbersmusteitherbeseparablefrom things,ornotseparablebutinobjectsofperception(nothowever inthewaywhichwefirstconsidered,inthesensethatobjectsof perceptionconsistsofnumberswhicharepresentinthem)-eitherone kindandnotanother,orallofthem。 Theseareofnecessitytheonlywaysinwhichthenumberscan exist。Andofthosewhosaythatthe1isthebeginningand substanceandelementofallthings,andthatnumberisformedfrom the1andsomethingelse,almosteveryonehasdescribednumberinone oftheseways;onlynoonehassaidalltheunitsareinassociable。 Andthishashappenedreasonablyenough;fortherecanbenoway besidesthosementioned。Somesaybothkindsofnumberexist,that whichhasabeforeandafterbeingidenticalwiththeIdeas,and mathematicalnumberbeingdifferentfromtheIdeasandfromsensible things,andbothbeingseparablefromsensiblethings;andothers saymathematicalnumberaloneexists,asthefirstofrealities, separatefromsensiblethings。AndthePythagoreans,also,believe inonekindofnumber-themathematical;onlytheysayitisnot separatebutsensiblesubstancesareformedoutofit。Forthey constructthewholeuniverseoutofnumbers-onlynotnumbers consistingofabstractunits;theysupposetheunitstohavespatial magnitude。Buthowthefirst1wasconstructedsoastohave magnitude,theyseemunabletosay。 Anotherthinkersaysthefirstkindofnumber,thatofthe Forms,aloneexists,andsomesaymathematicalnumberisidentical withthis。 Thecaseoflines,planes,andsolidsissimilar。Forsomethink thatthosewhicharetheobjectsofmathematicsaredifferentfrom thosewhichcomeaftertheIdeas;andofthosewhoexpress themselvesotherwisesomespeakoftheobjectsofmathematicsandina mathematicalway-viz。thosewhodonotmaketheIdeasnumbersnor saythatIdeasexist;andothersspeakoftheobjectsof mathematics,butnotmathematically;fortheysaythatneitheris everyspatialmagnitudedivisibleintomagnitudes,nordoanytwo unitstakenatrandommake2。Allwhosaythe1isanelementand principleofthingssupposenumberstoconsistofabstractunits, exceptthePythagoreans;buttheysupposethenumberstohave magnitude,ashasbeensaidbefore。Itisclearfromthisstatement, then,inhowmanywaysnumbersmaybedescribed,andthatalltheways havebeenmentioned;andalltheseviewsareimpossible,butsome perhapsmorethanothers。 First,then,letusinquireiftheunitsareassociableor inassociable,andifinassociable,inwhichofthetwowayswe distinguished。Foritispossiblethatanyunityisinassociable withany,anditispossiblethatthoseinthe’itself’are inassociablewiththoseinthe’itself’,and,generally,thatthosein eachidealnumberareinassociablewiththoseinotherideal numbers。Now(1)allunitsareassociableandwithoutdifference,we getmathematicalnumber-onlyonekindofnumber,andtheIdeas cannotbethenumbers。Forwhatsortofnumberwillman-himselfor animal-itselforanyotherFormbe?ThereisoneIdeaofeachthing e。g。oneofman-himselfandanotheroneofanimal-itself;butthe similarandundifferentiatednumbersareinfinitelymany,sothat anyparticular3isnomoreman-himselfthananyother3。Butifthe Ideasarenotnumbers,neithercantheyexistatall。Forfromwhat principleswilltheIdeascome?Itisnumberthatcomesfromthe1and theindefinitedyad,andtheprinciplesorelementsaresaidtobe principlesandelementsofnumber,andtheIdeascannotberankedas eitherpriororposteriortothenumbers。 But(2)iftheunitsareinassociable,andinassociableinthe sensethatanyisinassociablewithanyother,numberofthissort cannotbemathematicalnumber;formathematicalnumberconsistsof undifferentiatedunits,andthetruthsprovedofitsuitthis character。Norcanitbeidealnumber。For2willnotproceed immediatelyfrom1andtheindefinitedyad,andbefollowedbythe successivenumbers,astheysay’2,3,4’fortheunitsintheidealare generatedatthesametime,whether,asthefirstholderofthetheory said,fromunequals(comingintobeingwhenthesewereequalized)or insomeotherway-since,ifoneunitistobepriortotheother,it willbeprioralsoto2thecomposedofthese;forwhenthereisone thingpriorandanotherposterior,theresultantofthesewillbe priortooneandposteriortotheother。 Again,sincethe1-itselfis first,andthenthereisaparticular1whichisfirstamongthe othersandnextafterthe1-itself,andagainathirdwhichisnext afterthesecondandnextbutoneafterthefirst1,-sotheunitsmust bepriortothenumbersafterwhichtheyarenamedwhenwecountthem; e。g。therewillbeathirdunitin2before3exists,andafourthand afifthin3beforethenumbers4and5exist-Nownoneofthese thinkershassaidtheunitsareinassociableinthisway,but accordingtotheirprinciplesitisreasonablethattheyshouldbe soeveninthisway,thoughintruthitisimpossible。Foritis reasonableboththattheunitsshouldhavepriorityandposteriority ifthereisafirstunitorfirst1,andalsothatthe2’sshouldif thereisafirst2;forafterthefirstitisreasonableandnecessary thatthereshouldbeasecond,andifasecond,athird,andsowith theotherssuccessively。(Andtosayboththingsatthesametime, thataunitisfirstandanotherunitissecondaftertheideal1,and thata2isfirstafterit,isimpossible。)Buttheymakeafirstunit or1,butnotalsoasecondandathird,andafirst2,butnotalsoa secondandathird。Clearly,also,itisnotpossible,ifallthe unitsareinassociable,thatthereshouldbea2-itselfanda 3-itself;andsowiththeothernumbers。Forwhethertheunitsare undifferentiatedordifferenteachfromeach,numbermustbecounted byaddition,e。g。2byaddinganother1totheone,3byadding another1tothetwo,andsimilarly。Thisbeingso,numberscannot begeneratedastheygeneratethem,fromthe2andthe1;for2 becomespartof3and3of4andthesamehappensinthecaseofthe succeedingnumbers,buttheysay4camefromthefirst2andthe indefinitewhichmakesittwo2’sotherthanthe2-itself;ifnot,the 2-itselfwillbeapartof4andoneother2willbeadded。And similarly2willconsistofthe1-itselfandanother1;butifthisis so,theotherelementcannotbeanindefinite2;foritgenerates oneunit,not,astheindefinite2does,adefinite2。 Again,besidesthe3-itselfandthe2-itselfhowcantherebe other3’sand2’s?Andhowdotheyconsistofpriorandposterior units?Allthisisabsurdandfictitious,andtherecannotbea first2andthena3-itself。Yettheremust,ifthe1andthe indefinitedyadaretobetheelements。Butiftheresultsare impossible,itisalsoimpossiblethatthesearethegenerating principles。 Iftheunits,then,aredifferentiated,eachfromeach,these resultsandotherssimilartothesefollowofnecessity。But(3)if thoseindifferentnumbersaredifferentiated,butthoseinthesame numberarealoneundifferentiatedfromoneanother,evensothe difficultiesthatfollowarenoless。E。g。inthe10-itselftheir aretenunits,andthe10iscomposedbothofthemandoftwo5’s。But sincethe10-itselfisnotanychancenumbernorcomposedofany chance5’s——or,forthatmatter,units——theunitsinthis10must differ。Foriftheydonotdiffer,neitherwillthe5’sofwhichthe 10consistsdiffer;butsincethesediffer,theunitsalsowill differ。Butiftheydiffer,willtherebenoother5’sinthe10but onlythesetwo,orwilltherebeothers?Iftherearenot,thisis paradoxical;andifthereare,whatsortof10willconsistofthem? Forthereisnootherinthe10butthe10itself。Butitis actuallynecessaryontheirviewthatthe4shouldnotconsistof anychance2’s;fortheindefiniteastheysay,receivedthe definite2andmadetwo2’s;foritsnaturewastodoublewhatit received。 Again,astothe2beinganentityapartfromitstwounits,and the3anentityapartfromitsthreeunits,howisthispossible? Eitherbyone’ssharingintheother,as’paleman’isdifferent from’pale’and’man’(foritsharesinthese),orwhenoneisa differentiaoftheother,as’man’isdifferentfrom’animal’and ’two-footed’。 Again,somethingsareonebycontact,somebyintermixture, somebyposition;noneofwhichcanbelongtotheunitsofwhichthe2 orthe3consists;butastwomenarenotaunityapartfromboth, somustitbewiththeunits。Andtheirbeingindivisiblewillmakeno differencetothem;forpointstooareindivisible,butyetapair ofthemisnothingapartfromthetwo。