第44章

类别:其他 作者:Baldwin Thomas字数:4918更新时间:18/12/26 16:28:37
Forjustastheuniversalpropositionsofmathematicsdealnot withobjectswhichexistseparately,apartfromextendedmagnitudes andfromnumbers,butwithmagnitudesandnumbers,nothoweverqua suchastohavemagnitudeortobedivisible,clearlyitispossible thatthereshouldalsobebothpropositionsanddemonstrationsabout sensiblemagnitudes,nothoweverquasensiblebutquapossessedof certaindefinitequalities。Forastherearemanypropositionsabout thingsmerelyconsideredasinmotion,apartfromwhateachsuchthing isandfromtheiraccidents,andasitisnotthereforenecessarythat thereshouldbeeitheramobileseparatefromsensibles,oradistinct mobileentityinthesensibles,sotoointhecaseofmobilesthere willbepropositionsandsciences,whichtreatthemhowevernotqua mobilebutonlyquabodies,oragainonlyquaplanes,oronlyqua lines,orquadivisibles,orquaindivisibleshavingposition,oronly quaindivisibles。Thussinceitistruetosaywithoutqualification thatnotonlythingswhichareseparablebutalsothingswhichare inseparableexist(forinstance,thatmobilesexist),itistrue alsotosaywithoutqualificationthattheobjectsofmathematics exist,andwiththecharacterascribedtothembymathematicians。 Andasitistruetosayoftheothersciencestoo,without qualification,thattheydealwithsuchandsuchasubject-notwith whatisaccidentaltoit(e。g。notwiththepale,ifthehealthything ispale,andthesciencehasthehealthyasitssubject),butwith thatwhichisthesubjectofeachscience-withthehealthyifit treatsitsobjectquahealthy,withmanifquaman:-sotooisit withgeometry;ifitssubjectshappentobesensible,thoughitdoes nottreatthemquasensible,themathematicalscienceswillnotfor thatreasonbesciencesofsensibles-nor,ontheotherhand,of otherthingsseparatefromsensibles。Manypropertiesattachtothings invirtueoftheirownnatureaspossessedofeachsuchcharacter; e。g。thereareattributespeculiartotheanimalquafemaleorqua male(yetthereisno’female’nor’male’separatefromanimals);so thattherearealsoattributeswhichbelongtothingsmerelyas lengthsorasplanes。Andinproportionaswearedealingwith thingswhicharepriorindefinitionandsimpler,ourknowledgehas moreaccuracy,i。e。simplicity。Thereforeasciencewhichabstracts fromspatialmagnitudeismoreprecisethanonewhichtakesitinto account;andascienceismostpreciseifitabstractsfrom movement,butifittakesaccountofmovement,itismostpreciseif itdealswiththeprimarymovement,forthisisthesimplest;andof thisagainuniformmovementisthesimplestform。 Thesameaccountmaybegivenofharmonicsandoptics;forneither considersitsobjectsquasightorquavoice,butqualinesand numbers;butthelatterareattributespropertotheformer。And mechanicstooproceedsinthesameway。Thereforeifwesuppose attributesseparatedfromtheirfellowattributesandmakeanyinquiry concerningthemassuch,weshallnotforthisreasonbeinerror,any morethanwhenonedrawsalineonthegroundandcallsitafootlong whenitisnot;fortheerrorisnotincludedinthepremisses。 Eachquestionwillbebestinvestigatedinthisway-bysetting upbyanactofseparationwhatisnotseparate,asthe arithmeticianandthegeometerdo。Foramanquamanisone indivisiblething;andthearithmeticiansupposedoneindivisible thing,andthenconsideredwhetheranyattributebelongstoaman quaindivisible。Butthegeometertreatshimneitherquamannorqua indivisible,butasasolid。Forevidentlythepropertieswhich wouldhavebelongedtohimevenifperchancehehadnotbeen indivisible,canbelongtohimevenapartfromtheseattributes。Thus, then,geometersspeakcorrectly;theytalkaboutexistingthings, andtheirsubjectsdoexist;forbeinghastwoforms-itexistsnot onlyincompleterealitybutalsomaterially。 Nowsincethegoodandthebeautifularedifferent(fortheformer alwaysimpliesconductasitssubject,whilethebeautifulisfound alsoinmotionlessthings),thosewhoassertthatthemathematical sciencessaynothingofthebeautifulorthegoodareinerror。For thesesciencessayandproveagreatdealaboutthem;iftheydonot expresslymentionthem,butproveattributeswhicharetheirresults ortheirdefinitions,itisnottruetosaythattheytellus nothingaboutthem。Thechiefformsofbeautyareorderandsymmetry anddefiniteness,whichthemathematicalsciencesdemonstrateina specialdegree。Andsincethese(e。g。orderanddefiniteness)are obviouslycausesofmanythings,evidentlythesesciencesmusttreat thissortofcausativeprinciplealso(i。e。thebeautiful)asin somesenseacause。Butweshallspeakmoreplainlyelsewhereabout thesematters。 Somuchthenfortheobjectsofmathematics;wehavesaidthat theyexistandinwhatsensetheyexist,andinwhatsensetheyare priorandinwhatsensenotprior。Now,regardingtheIdeas,wemust firstexaminetheidealtheoryitself,notconnectingitinanyway withthenatureofnumbers,buttreatingitintheforminwhichit wasoriginallyunderstoodbythosewhofirstmaintainedthe existenceoftheIdeas。Thesupportersoftheidealtheorywereledto itbecauseonthequestionaboutthetruthofthingstheyacceptedthe Heracliteansayingswhichdescribeallsensiblethingsaseverpassing away,sothatifknowledgeorthoughtistohaveanobject,theremust besomeotherandpermanententities,apartfromthosewhichare sensible;fortherecouldbenoknowledgeofthingswhichwereina stateofflux。ButwhenSocrateswasoccupyinghimselfwiththe excellencesofcharacter,andinconnexionwiththembecamethe firsttoraisetheproblemofuniversaldefinition(forofthe physicistsDemocritusonlytouchedonthesubjecttoasmallextent, anddefined,afterafashion,thehotandthecold;whilethe Pythagoreanshadbeforethistreatedofafewthings,whose definitions-e。g。thoseofopportunity,justice,ormarriage-they connectedwithnumbers;butitwasnaturalthatSocratesshouldbe seekingtheessence,forhewasseekingtosyllogize,and’whata thingis’isthestarting-pointofsyllogisms;fortherewasasyet noneofthedialecticalpowerwhichenablespeopleevenwithout knowledgeoftheessencetospeculateaboutcontrariesandinquire whetherthesamesciencedealswithcontraries;fortwothingsmay befairlyascribedtoSocrates-inductiveargumentsanduniversal definition,bothofwhichareconcernedwiththestarting-pointof science):-butSocratesdidnotmaketheuniversalsorthe definitionsexistapart:they,however,gavethemseparate existence,andthiswasthekindofthingtheycalledIdeas。Therefore itfollowedforthem,almostbythesameargument,thattheremust beIdeasofallthingsthatarespokenofuniversally,anditwas almostasifamanwishedtocountcertainthings,andwhiletheywere fewthoughthewouldnotbeabletocountthem,butmademoreof themandthencountedthem;fortheFormsare,onemaysay,more numerousthantheparticularsensiblethings,yetitwasinseeking thecausesofthesethattheyproceededfromthemtotheForms。Forto eachthingthereanswersanentitywhichhasthesamenameand existsapartfromthesubstances,andsoalsointhecaseofallother groupsthereisaoneovermany,whetherthesebeofthisworldor eternal。 Again,ofthewaysinwhichitisprovedthattheFormsexist, noneisconvincing;forfromsomenoinferencenecessarilyfollows, andfromsomeariseFormsevenofthingsofwhichtheythinkthereare noForms。Foraccordingtotheargumentsfromthesciencesthere willbeFormsofallthingsofwhichtherearesciences,andaccording totheargumentofthe’oneovermany’therewillbeFormsevenof negations,andaccordingtotheargumentthatthoughthasanobject whentheindividualobjecthasperished,therewillbeFormsof perishablethings;forwehaveanimageofthese。Again,ofthemost accuratearguments,someleadtoIdeasofrelations,ofwhichtheysay thereisnoindependentclass,andothersintroducethe’thirdman’。 AndingeneraltheargumentsfortheFormsdestroythingsfor whoseexistencethebelieversinFormsaremorezealousthanforthe existenceoftheIdeas;foritfollowsthatnotthedyadbutnumberis first,andthatpriortonumberistherelative,andthatthisis priortotheabsolute-besidesalltheotherpointsonwhichcertain people,byfollowingouttheopinionsheldabouttheForms,came intoconflictwiththeprinciplesofthetheory。 Again,accordingtotheassumptiononthebeliefintheIdeas rests,therewillbeFormsnotonlyofsubstancesbutalsoofmany otherthings;fortheconceptissinglenotonlyinthecaseof substances,butalsointhatofnon-substances,andtherearesciences ofotherthingsthansubstance;andathousandothersuchdifficulties confrontthem。Butaccordingtothenecessitiesofthecaseandthe opinionsabouttheForms,iftheycanbesharedintheremustbeIdeas ofsubstancesonly。Fortheyarenotsharedinincidentally,but eachFormmustbesharedinassomethingnotpredicatedofa subject。(By’beingsharedinincidentally’Imeanthatifathing sharesin’doubleitself’,itsharesalsoin’eternal’,but incidentally;for’thedouble’happenstobeeternal。)Thereforethe Formswillbesubstance。Butthesamenamesindicatesubstanceinthis andintheidealworld(orwhatwillbethemeaningofsayingthat thereissomethingapartfromtheparticulars-theoneovermany?)。And iftheIdeasandthethingsthatshareinthemhavethesameform, therewillbesomethingcommon:forwhyshould’2’beoneandthesame intheperishable2’s,orinthe2’swhicharemanybuteternal,and notthesameinthe’2itself’asintheindividual2?Butifthey havenotthesameform,theywillhaveonlythenameincommon,andit isasifoneweretocallbothCalliasandapieceofwooda’man’, withoutobservinganycommunitybetweenthem。 Butifwearetosupposethatinotherrespectsthecommon definitionsapplytotheForms,e。g。that’planefigure’andtheother partsofthedefinitionapplytothecircleitself,but’whatreally is’hastobeadded,wemustinquirewhetherthisisnotabsolutely meaningless。Fortowhatisthistobeadded?To’centre’orto ’plane’ortoallthepartsofthedefinition?Foralltheelementsin theessenceareIdeas,e。g。’animal’and’two-footed’。Further, theremustbesomeIdealansweringto’plane’above,somenaturewhich willbepresentinalltheFormsastheirgenus。 Aboveallonemightdiscussthequestionwhatintheworldthe Formscontributetosensiblethings,eithertothosethatare eternalortothosethatcomeintobeingandceasetobe;forthey causeneithermovementnoranychangeinthem。Butagaintheyhelp innowiseeithertowardstheknowledgeofotherthings(forthey arenoteventhesubstanceofthese,elsetheywouldhavebeenin them),ortowardstheirbeing,iftheyarenotintheindividuals whichshareinthem;thoughiftheywere,theymightbethoughtto becauses,aswhitecauseswhitenessinawhiteobjectbyentering intoitscomposition。Butthisargument,whichwasusedfirstby Anaxagoras,andlaterbyEudoxusinhisdiscussionofdifficultiesand bycertainothers,isveryeasilyupset;foritiseasytocollect manyandinsuperableobjectionstosuchaview。