第43章

类别:其他 作者:Baldwin Thomas字数:5133更新时间:18/12/26 16:28:37
Further,whyshouldtherealwaysbebecoming,andwhatisthe causeofbecoming?-thisnoonetellsus。Andthosewhosupposetwo principlesmustsupposeanother,asuperiorprinciple,andsomust thosewhobelieveintheForms;forwhydidthingscometo participate,orwhydotheyparticipate,intheForms?Andallother thinkersareconfrontedbythenecessaryconsequencethatthereis somethingcontrarytoWisdom,i。e。tothehighestknowledge;butwe arenot。Forthereisnothingcontrarytothatwhichisprimary;for allcontrarieshavematter,andthingsthathavematterexistonly potentially;andtheignorancewhichiscontrarytoanyknowledge leadstoanobjectcontrarytotheobjectoftheknowledge;butwhat isprimaryhasnocontrary。 Again,ifbesidessensiblethingsnoothersexist,therewillbe nofirstprinciple,noorder,nobecoming,noheavenlybodies,but eachprinciplewillhaveaprinciplebeforeit,asintheaccounts ofthetheologiansandallthenaturalphilosophers。Butifthe Formsorthenumbersaretoexist,theywillbecausesofnothing; orifnotthat,atleastnotofmovement。Further,howisextension, i。e。acontinuum,tobeproducedoutofunextendedparts?Fornumber willnot,eitherasmoverorasform,produceacontinuum。Butagain therecannotbeanycontrarythatisalsoessentiallyaproductive ormovingprinciple;foritwouldbepossibleforitnottobe。Or atleastitsactionwouldbeposteriortoitspotency。Theworld, then,wouldnotbeeternal。Butitis;oneofthesepremisses,then, mustbedenied。Andwehavesaidhowthismustbedone。Further,in virtueofwhatthenumbers,orthesoulandthebody,oringeneral theformandthething,areone-ofthisnoonetellsusanything; norcananyonetell,unlesshesays,aswedo,thatthemovermakes themone。Andthosewhosaymathematicalnumberisfirstandgoon togenerateonekindofsubstanceafteranotherandgivedifferent principlesforeach,makethesubstanceoftheuniverseamere seriesofepisodes(foronesubstancehasnoinfluenceonanotherby itsexistenceornonexistence),andtheygiveusmanygoverning principles;buttheworldrefusestobegovernedbadly。 ’Theruleofmanyisnotgood;onerulerlettherebe。’ WEhavestatedwhatisthesubstanceofsensiblethings,dealing inthetreatiseonphysicswithmatter,andlaterwiththesubstance whichhasactualexistence。Nowsinceourinquiryiswhetherthere isorisnotbesidesthesensiblesubstancesanywhichisimmovable andeternal,and,ifthereis,whatitis,wemustfirstconsiderwhat issaidbyothers,sothat,ifthereisanythingwhichtheysay wrongly,wemaynotbeliabletothesameobjections,while,if thereisanyopinioncommontothemandus,weshallhavenoprivate grievanceagainstourselvesonthataccount;foronemustbecontent tostatesomepointsbetterthanone’spredecessors,andothersno worse。 Twoopinionsareheldonthissubject;itissaidthattheobjects ofmathematics-i。e。numbersandlinesandthelike-aresubstances,and againthattheIdeasaresubstances。And(1)sincesomerecognize theseastwodifferentclasses-theIdeasandthemathematicalnumbers, and(2)somerecognizebothashavingonenature,while(3)some otherssaythatthemathematicalsubstancesaretheonlysubstances, wemustconsiderfirsttheobjectsofmathematics,notqualifyingthem byanyothercharacteristic-notasking,forinstance,whethertheyare infactIdeasornot,orwhethertheyaretheprinciplesand substancesofexistingthingsornot,butonlywhetherasobjectsof mathematicstheyexistornot,andiftheyexist,howtheyexist。Then afterthiswemustseparatelyconsidertheIdeasthemselvesina generalway,andonlyasfarastheacceptedmodeoftreatment demands;formostofthepointshavebeenrepeatedlymadeevenby thediscussionsoutsideourschool,and,further,thegreaterpart ofouraccountmustfinishbythrowinglightonthatinquiry,viz。 whenweexaminewhetherthesubstancesandtheprinciplesof existingthingsarenumbersandIdeas;forafterthediscussionofthe Ideasthisremansasathirdinquiry。 Iftheobjectsofmathematicsexist,theymustexisteitherin sensibleobjects,assomesay,orseparatefromsensibleobjects (andthisalsoissaidbysome);oriftheyexistinneitherof theseways,eithertheydonotexist,ortheyexistonlyinsome specialsense。Sothatthesubjectofourdiscussionwillbenot whethertheyexistbuthowtheyexist。 Thatitisimpossibleformathematicalobjectstoexistin sensiblethings,andatthesametimethatthedoctrineinquestionis anartificialone,hasbeensaidalreadyinourdiscussionof difficultieswehavepointedoutthatitisimpossiblefortwo solidstobeinthesameplace,andalsothataccordingtothesame argumenttheotherpowersandcharacteristicsalsoshouldexistin sensiblethingsandnoneofthemseparately。Thiswehavesaid already。But,further,itisobviousthatonthistheoryitis impossibleforanybodywhatevertobedivided;foritwouldhaveto bedividedataplane,andtheplaneataline,andthelineata point,sothatifthepointcannotbedivided,neithercantheline, andifthelinecannot,neithercantheplanenorthesolid。What difference,then,doesitmakewhethersensiblethingsaresuch indivisibleentities,or,withoutbeingsothemselves,have indivisibleentitiesinthem?Theresultwillbethesame;ifthe sensibleentitiesaredividedtheotherswillbedividedtoo,or elsenoteventhesensibleentitiescanbedivided。 But,again,itisnotpossiblethatsuchentitiesshouldexist separately。Forifbesidesthesensiblesolidstherearetobeother solidswhichareseparatefromthemandpriortothesensible solids,itisplainthatbesidestheplanesalsotheremustbeother andseparateplanesandpointsandlines;forconsistencyrequires this。Butiftheseexist,againbesidestheplanesandlinesand pointsofthemathematicalsolidtheremustbeotherswhichare separate。(Forincompositesarepriortocompounds;andifthere are,priortothesensiblebodies,bodieswhicharenotsensible,by thesameargumenttheplaneswhichexistbythemselvesmustbeprior tothosewhichareinthemotionlesssolids。Thereforethesewillbe planesandlinesotherthanthosethatexistalongwiththe mathematicalsolidstowhichthesethinkersassignseparateexistence; forthelatterexistalongwiththemathematicalsolids,whilethe othersarepriortothemathematicalsolids。)Again,therefore, therewillbe,belongingtotheseplanes,lines,andpriortothem therewillhavetobe,bythesameargument,otherlinesandpoints; andpriortothesepointsinthepriorlinestherewillhavetobe otherpoints,thoughtherewillbenootherspriortothese。Now(1) theaccumulationbecomesabsurd;forwefindourselveswithonesetof solidsapartfromthesensiblesolids;threesetsofplanesapartfrom thesensibleplanes-thosewhichexistapartfromthesensible planes,andthoseinthemathematicalsolids,andthosewhichexist apartfromthoseinthemathematicalsolids;foursetsoflines,and fivesetsofpoints。Withwhichofthese,then,willthe mathematicalsciencesdeal?Certainlynotwiththeplanesandlines andpointsinthemotionlesssolid;forsciencealwaysdealswithwhat isprior。And(thesameaccountwillapplyalsotonumbers;for therewillbeadifferentsetofunitsapartfromeachsetof points,andalsoapartfromeachsetofrealities,fromtheobjectsof senseandagainfromthoseofthought;sothattherewillbevarious classesofmathematicalnumbers。 Again,howisitpossibletosolvethequestionswhichwehave alreadyenumeratedinourdiscussionofdifficulties?Forthe objectsofastronomywillexistapartfromsensiblethingsjustasthe objectsofgeometrywill;buthowisitpossiblethataheavenandits parts-oranythingelsewhichhasmovement-shouldexistapart? Similarlyalsotheobjectsofopticsandofharmonicswillexist apart;fortherewillbebothvoiceandsightbesidesthesensible orindividualvoicesandsights。Thereforeitisplainthatthe othersensesaswell,andtheotherobjectsofsense,willexist apart;forwhyshouldonesetofthemdosoandanothernot?Andif thisisso,therewillalsobeanimalsexistingapart,sincethere willbesenses。 Again,therearecertainmathematicaltheoremsthatareuniversal, extendingbeyondthesesubstances。Herethenweshallhaveanother intermediatesubstanceseparatebothfromtheIdeasandfromthe intermediates,-asubstancewhichisneithernumbernorpointsnor spatialmagnitudenortime。Andifthisisimpossible,plainlyitis alsoimpossiblethattheformerentitiesshouldexistseparatefrom sensiblethings。 And,ingeneral,conclusioncontraryaliketothetruthandtothe usualviewsfollow,ifoneistosupposetheobjectsofmathematicsto existthusasseparateentities。Forbecausetheyexistthustheymust bepriortosensiblespatialmagnitudes,butintruththeymustbe posterior;fortheincompletespatialmagnitudeisintheorderof generationprior,butintheorderofsubstanceposterior,asthe lifelessistotheliving。 Again,byvirtueofwhat,andwhen,willmathematicalmagnitudes beone?Forthingsinourperceptibleworldareoneinvirtueofsoul, orofapartofsoul,orofsomethingelsethatisreasonable enough;whenthesearenotpresent,thethingisaplurality,and splitsupintoparts。Butinthecaseofthesubjectsof mathematics,whicharedivisibleandarequantities,whatisthecause oftheirbeingoneandholdingtogether? Again,themodesofgenerationoftheobjectsofmathematics showthatweareright。Forthedimensionfirstgeneratedislength, thencomesbreadth,lastlydepth,andtheprocessiscomplete。If, then,thatwhichisposteriorintheorderofgenerationispriorin theorderofsubstantiality,thesolidwillbepriortotheplane andtheline。Andinthiswayalsoitisbothmorecompleteandmore whole,becauseitcanbecomeanimate。How,ontheotherhand,could alineoraplanebeanimate?Thesuppositionpassesthepowerof oursenses。 Again,thesolidisasortofsubstance;foritalreadyhasina sensecompleteness。Buthowcanlinesbesubstances?Neitherasaform orshape,asthesoulperhapsis,norasmatter,likethesolid;for wehavenoexperienceofanythingthatcanbeputtogetheroutof linesorplanesorpoints,whileifthesehadbeenasortof materialsubstance,weshouldhaveobservedthingswhichcouldbe puttogetheroutofthem。 Grant,then,thattheyarepriorindefinition。Stillnotall thingsthatarepriorindefinitionarealsopriorin substantiality。Forthosethingsarepriorinsubstantialitywhich whenseparatedfromotherthingssurpasstheminthepowerof independentexistence,butthingsarepriorindefinitiontothose whosedefinitionsarecompoundedoutoftheirdefinitions;andthese twopropertiesarenotcoextensive。Forifattributesdonotexist apartfromthesubstances(e。g。a’mobile’orapale’),paleis priortothepalemanindefinition,butnotinsubstantiality。Forit cannotexistseparately,butisalwaysalongwiththeconcrete thing;andbytheconcretethingImeanthepaleman。Thereforeit isplainthatneitheristheresultofabstractionpriornorthat whichisproducedbyaddingdeterminantsposterior;foritisby addingadeterminanttopalethatwespeakofthepaleman。 Ithas,then,beensufficientlypointedoutthattheobjectsof mathematicsarenotsubstancesinahigherdegreethanbodiesare,and thattheyarenotpriortosensiblesinbeing,butonlyindefinition, andthattheycannotexistsomewhereapart。Butsinceitwasnot possibleforthemtoexistinsensibleseither,itisplainthat theyeitherdonotexistatallorexistinaspecialsenseand thereforedonot’exist’withoutqualification。For’exist’hasmany senses。