Wemightraisesimilarquestionsabouttheoneandthemany。For
ifthemanyareabsolutelyopposedtotheone,certainimpossible
resultsfollow。Onewillthenbefew,whetherfewbetreatedhereas
singularorplural;forthemanyareopposedalsotothefew。Further,
twowillbemany,sincethedoubleismultipleand’double’derives
itsmeaningfrom’two’;thereforeonewillbefew;forwhatisthatin
comparisonwithwhichtwoaremany,exceptone,whichmusttherefore
befew?Forthereisnothingfewer。Further,ifthemuchandthe
littleareinpluralitywhatthelongandtheshortareinlength,and
whateverismuchisalsomany,andthemanyaremuch(unless,
indeed,thereisadifferenceinthecaseofaneasily-bounded
continuum),thelittle(orfew)willbeaplurality。Thereforeone
isapluralityifitisfew;andthisitmustbe,iftwoaremany。But
perhaps,whilethe’many’areinasensesaidtobealso’much’,itis
withadifference;e。g。waterismuchbutnotmany。But’many’is
appliedtothethingsthataredivisible;intheonesenseitmeans
apluralitywhichisexcessiveeitherabsolutelyorrelatively
(while’few’issimilarlyapluralitywhichisdeficient),andin
anothersenseitmeansnumber,inwhichsensealoneitisopposedto
theone。Forwesay’oneormany’,justasifoneweretosay’oneand
ones’or’whitethingandwhitethings’,ortocomparethethingsthat
havebeenmeasuredwiththemeasure。Itisinthissensealsothat
multiplesaresocalled。Foreachnumberissaidtobemanybecauseit
consistsofonesandbecauseeachnumberismeasurablebyone;and
itis’many’asthatwhichisopposedtoone,nottothefew。In
thissense,then,eventwoismany-not,however,inthesenseofa
pluralitywhichisexcessiveeitherrelativelyorabsolutely;itis
thefirstplurality。Butwithoutqualificationtwoisfew;foritis
firstpluralitywhichisdeficient(forthisreasonAnaxagoraswasnot
rightinleavingthesubjectwiththestatementthat’allthings
weretogether,boundlessbothinpluralityandinsmallness’-wherefor
’andinsmallness’heshouldhavesaid’andinfewness’;forthey
couldnothavebeenboundlessinfewness),sinceitisnotone,as
somesay,buttwo,thatmakeafew。
Theoneisopposedthentothemanyinnumbersasmeasuretothing
measurable;andtheseareopposedasaretherelativeswhicharenot
fromtheirverynaturerelatives。Wehavedistinguishedelsewhere
thetwosensesinwhichrelativesaresocalled:-(1)ascontraries;
(2)asknowledgetothingknown,atermbeingcalledrelative
becauseanotherisrelativetoit。Thereisnothingtopreventone
frombeingfewerthansomething,e。g。thantwo;forifoneisfewer,
itisnotthereforefew。Pluralityisasitweretheclasstowhich
numberbelongs;fornumberispluralitymeasurablebyone,andoneand
numberareinasenseopposed,notascontrary,butaswehavesaid
somerelativetermsareopposed;forinasmuchasoneismeasureand
theothermeasurable,theyareopposed。Thisiswhynoteverything
thatisoneisanumber;i。e。ifthethingisindivisibleitisnot
anumber。Butthoughknowledgeissimilarlyspokenofasrelativeto
theknowable,therelationdoesnotworkoutsimilarly;forwhile
knowledgemightbethoughttobethemeasure,andtheknowablethe
thingmeasured,thefactthatallknowledgeisknowable,butnotall
thatisknowableisknowledge,becauseinasenseknowledgeis
measuredbytheknowable-Pluralityiscontraryneithertothefew
(themanybeingcontrarytothisasexcessivepluralitytoplurality
exceeded),nortotheoneineverysense;butintheonesensethese
arecontrary,ashasbeensaid,becausetheformerisdivisibleand
thelatterindivisible,whileinanothersensetheyarerelativeas
knowledgeistoknowable,ifpluralityisnumberandtheoneisa
measure。
Sincecontrariesadmitofanintermediateandinsomecaseshave
it,intermediatesmustbecomposedofthecontraries。For(1)all
intermediatesareinthesamegenusasthethingsbetweenwhichthey
stand。Forwecallthosethingsintermediates,intowhichthatwhich
changesmustchangefirst;e。g。ifweweretopassfromthehighest
stringtothelowestbythesmallestintervals,weshouldcome
soonertotheintermediatenotes,andincoloursifweweretopass
fromwhitetoblack,weshouldcomesoonertocrimsonandgreythanto
black;andsimilarlyinallothercases。Buttochangefromone
genustoanothergenusisnotpossibleexceptinanincidentalway,as
fromcolourtofigure。Intermediates,then,mustbeinthesame
genusbothasoneanotherandasthethingstheystandbetween。
But(2)allintermediatesstandbetweenoppositesofsomekind;
foronlybetweenthesecanchangetakeplaceinvirtueoftheirown
nature(sothatanintermediateisimpossiblebetweenthingswhichare
notopposite;forthentherewouldbechangewhichwasnotfromone
oppositetowardstheother)。Ofopposites,contradictoriesadmitofno
middleterm;forthisiswhatcontradictionis-anopposition,oneor
othersideofwhichmustattachtoanythingwhatever,i。e。whichhas
nointermediate。Ofotheropposites,somearerelative,others
privative,otherscontrary。Ofrelativeterms,thosewhicharenot
contraryhavenointermediate;thereasonisthattheyarenotin
thesamegenus。Forwhatintermediatecouldtherebebetweenknowledge
andknowable?Butbetweengreatandsmallthereisone。
(3)Ifintermediatesareinthesamegenus,ashasbeenshown,and
standbetweencontraries,theymustbecomposedofthesecontraries。
Foreithertherewillbeagenusincludingthecontrariesorthere
willbenone。Andif(a)thereistobeagenusinsuchawaythat
itissomethingpriortothecontraries,thedifferentiaewhich
constitutedthecontraryspecies-of-a-genuswillbecontrariesprior
tothespecies;forspeciesarecomposedofthegenusandthe
differentiae。(E。g。ifwhiteandblackarecontraries,andoneisa
piercingcolourandtheotheracompressingcolour,these
differentiae-’piercing’and’compressing’-areprior;sothattheseare
priorcontrariesofoneanother。)But,again,thespecieswhichdiffer
contrariwisearethemoretrulycontraryspecies。Andthe
other。species,i。e。theintermediates,mustbecomposedoftheirgenus
andtheirdifferentiae。(E。g。allcolourswhicharebetweenwhite
andblackmustbesaidtobecomposedofthegenus,i。e。colour,and
certaindifferentiae。Butthesedifferentiaewillnotbetheprimary
contraries;otherwiseeverycolourwouldbeeitherwhiteorblack。
Theyaredifferent,then,fromtheprimarycontraries;andtherefore
theywillbebetweentheprimarycontraries;theprimary
differentiaeare’piercing’and’compressing’。)
Thereforeitis(b)withregardtothesecontrarieswhichdonot
fallwithinagenusthatwemustfirstaskofwhattheirintermediates
arecomposed。(Forthingswhichareinthesamegenusmustbecomposed
oftermsinwhichthegenusisnotanelement,orelsebethemselves
incomposite。)Nowcontrariesdonotinvolveoneanotherintheir
composition,andarethereforefirstprinciples;buttheintermediates
areeitherallincomposite,ornoneofthem。Butthereissomething
compoundedoutofthecontraries,sothattherecanbeachangefroma
contrarytoitsoonerthantotheothercontrary;foritwillhave
lessofthequalityinquestionthantheonecontraryandmorethan
theother。Thisalso,then,willcomebetweenthecontraries。All
theotherintermediatesalso,therefore,arecomposite;forthatwhich
hasmoreofaqualitythanonethingandlessthananotheris
compoundedsomehowoutofthethingsthanwhichitissaidtohave
moreandlessrespectivelyofthequality。Andsincethereareno
otherthingspriortothecontrariesandhomogeneouswiththe
intermediates,allintermediatesmustbecompoundedoutofthe
contraries。Thereforealsoalltheinferiorclasses,boththe
contrariesandtheirintermediates,willbecompoundedoutofthe
primarycontraries。Clearly,then,intermediatesare(1)allinthe
samegenusand(2)intermediatebetweencontraries,and(3)all
compoundedoutofthecontraries。
Thatwhichisotherinspeciesisotherthansomethingin
something,andthismustbelongtoboth;e。g。ifitisananimalother
inspecies,bothareanimals。Thethings,then,whichareotherin
speciesmustbeinthesamegenus。ForbygenusImeanthatone
identicalthingwhichispredicatedofbothandisdifferentiatedin
nomerelyaccidentalway,whetherconceivedasmatterorotherwise。
Fornotonlymustthecommonnatureattachtothedifferentthings,
e。g。notonlymustbothbeanimals,butthisveryanimalitymust
alsobedifferentforeach(e。g。intheonecaseequinity,inthe
otherhumanity),andsothiscommonnatureisspecificallydifferent
foreachfromwhatitisfortheother。One,then,willbeinvirtue
ofitsownnatureonesortofanimal,andtheotheranother,e。g。
oneahorseandtheotheraman。Thisdifference,then,mustbean
othernessofthegenus。ForIgivethenameof’differenceinthe
genus’anothernesswhichmakesthegenusitselfother。
This,then,willbeacontrariety(ascanbeshownalsoby
induction)。Forallthingsaredividedbyopposites,andithasbeen
provedthatcontrariesareinthesamegenus。Forcontrarietywasseen
tobecompletedifference;andalldifferenceinspeciesisa
differencefromsomethinginsomething;sothatthisisthesamefor
bothandistheirgenus。(Hencealsoallcontrarieswhichare
differentinspeciesandnotingenusareinthesamelineof
predication,andotherthanoneanotherinthehighestdegree-for
thedifferenceiscomplete-,andcannotbepresentalongwithone
another。)Thedifference,then,isacontrariety。
This,then,iswhatitistobe’otherinspecies’-tohavea
contrariety,beinginthesamegenusandbeingindivisible(and
thosethingsarethesameinspecieswhichhavenocontrariety,
beingindivisible);wesay’beingindivisible’,forintheprocess
ofdivisioncontrarietiesariseintheintermediatestagesbeforewe
cometotheindivisibles。Evidently,therefore,withreferencetothat
whichiscalledthegenus,noneofthespecies-of-a-genusiseither
thesameasitorotherthanitinspecies(andthisisfitting;for
thematterisindicatedbynegation,andthegenusisthematterof
thatofwhichitiscalledthegenus,notinthesenseinwhichwe
speakofthegenusorfamilyoftheHeraclidae,butinthatinwhich
thegenusisanelementinathing’snature),norisitsowith
referencetothingswhicharenotinthesamegenus,butitwill
differingenusfromthem,andinspeciesfromthingsinthesame
genus。Forathing’sdifferencefromthatfromwhichitdiffersin
speciesmustbeacontrariety;andthisbelongsonlytothingsin
thesamegenus。